Rumus untuk menyelesaikan persamaan trigonometri sebagai berikut: 1. Sinus Jika dengan p dan a dalah konstanta, maka Dalam bentuk derajat: Sebagai contoh: Maka: Menentukan himpunan penyelesaian umumnya yaitu: k = 0 = 60 atau = 0 k = 1 = 180 atau = 120 k = 2 = 300 atau = 240 k = 3 = 360 Jadi, himpunan penyelesaian umumnya adalah:
18. Tentukan himpunan penyelesaian dari persamaan trigonometri berikut ini: sin 3x 0 = sin 45 0, jika x dalam interval 0 ? x ? 360 0. Jawaban: sin 3x 0 = sin 45 0, maka diperoleh: 3x = 45 0 + k.360 0 atau 3x = (180 0 ? 450 0) + k.360 0 » x = 15 0 + k.360 0 atau » 3x = 135 0 + k.360 0 » x = 45 0 + k.120 0
Berikut penyelesaian persamaan trigonometrinya : ♣ Persamaan Sinus : sinf(x) = sinθ memiliki penyelesaian : f(x) = θ + k. 2π dan f(x) = (180 ∘ − θ) + k. 2π. ♣ Persamaan Cosinus : cosf(x) = cosθ memiliki penyelesaian : f(x) = θ + k. 2π dan f(x) = − θ + k. 2π. ♣ Persamaan Tan : tanf(x) = tanθ memiliki penyelesaian :Persamaan trigonometri dapat memuat jumlah atau selisih dari sin atau cos. Untuk penyelesaiannya dapat diubah menjadi bentuk persamaan yang memuat perkalian sinus atau kosinus. Begitu juga jika dihadapkan dengan kasus sebaliknya.Rumus Persamaan Trigonometri. 1. sin xº = sin p. ⇒ x₁ = p + 360.k. ⇒ x₂ = (180 - p) + 360.k. 2. cos xº = cos p. ⇒ x₁ = p + 360.k. ⇒ x₂ = -p + 360.k. 3. tan xº = tan p. ⇒ x₁ = p + 180.k. ⇒ x₂ = (180 + p) + 360.k. Contoh Soal Persamaan Trigonometri. Untuk memahami lebih dalam, yuk simak baik-baik contoh soal persamaan Persamaan trigonometri sederhana terdiri dari persamaan untuk sinus, cosinus, dan tangen. Pembahasan materi persamaan trigonometri sederhana dibatasi pada penyelesaian yang berada pada rentang 0 o sampai dengan 360 o atau 0 sampai dengan 2π. Rumus untuk menyelesaikan persamaan trigonometri sederhana seperti berikut: Tentukan penyelesaian Tentukan himpunan penyelesaian dari persamaan-persamaan trigonometri berikut! a. sin 3x = 21, 0 ≤ x ≤ 2π Iklan HE H. Eka Master Teacher Mahasiswa/Alumni Universitas Pendidikan Indonesia Jawaban terverifikasi Pembahasan Jawaban yang benar untuk pertanyaan tersebut adalah {181 π, 185 π, 1813π, 1817π, 1825π, 1829π} Jika sin x = sin α, maka:Contoh Soal 2. Tentukan himpunan penyelesaian persamaan sin x = sin 70° , 0° ≤ x ≤ 360°. sin x = sin 70° , 0° ≤ x ≤ 360°. α = 70°. x = α + k.360°. Untuk k = 0 maka x = 70° + 0 .360° = 70°. untuk k = 1 maka x = 70°+1.360° = 430° (Tidak memenuhi interval) x = (180°− α) + k.360°.U2QV6Y.